Analisis Plastisitas Fenotipe Kupu-Kupu Papilio ulysses Asal Papua

Authors

  • Euniche R.P.F. Ramandey Cenderawasih University
  • Evie L. Warikar Universitas Cenderawasih

DOI:

https://doi.org/10.31957/jbp.1340

Abstract

Papua has a high diversity of butterflies, especially in mainland areas. Most of the data on the diversity and distribution of Papilionoidea, such as the example of Papilio ulysses in the mainland of Papua, are well known. Butterfly research in Papua is mostly aimed at species richness and abundance. Based on the results of specimen collection at the Papua Insect Collection Laboratory (KSP) Br Henk van Mastrigt FMIPA UNCEN, it can be seen that there are differences in morphological characters between P. ulysses in several areas in Papua, especially in the highlands and lowlands. The purpose of this study was to analyze the phenotypic plasticity pattern of P. ulysses stored in the KSP Laboratory. This research method is descriptive quantitative. The research sample consisted of 58 specimens with perfect wing shapes. The specimens were collected from Jayapura, Sarmi, Mamberamo, Timika, Pegunungan Bintang, Waropen and Biak-Supiori. The samples were documented using a digital camera and observed for wing variations using the Adobe Photoshop CS5 and Image J free program. Based on the observations, it shows that there are significant differences in the shape and size of P. ulysses that are found on the mainland and on islands. The morphology of butterflies originating from large areas is bigger than those of butterflies on islands. This butterfly plasticity process is a form of morphological adaptation to the surrounding environment.  

Key words: plasticity; P. ulysses; butterfly; Papua.

Downloads

Download data is not yet available.

Author Biographies

Euniche R.P.F. Ramandey, Cenderawasih University

Jurusan Biologi

Evie L. Warikar, Universitas Cenderawasih

Universitas Cenderawasih

References

Bai, Y., L.B. Ma, S.-Q. Xu, and G.-H. Wang. 2015. A geometric morphometric study of the wing shapes of Pieris rapae (Lepidoptera: Pieridae) from the Qinling Mountains and adjacent regions: An environmental distance-based consideration. Florida Entomologist. 98(1): 162-167.

Bevilaqua, M. 2020. Guide to image editing and production of figures for scientific publications with an emphasis on taxonomy. Zoosyst. Evol. 96(1): 139–158.

Davies, W.J and I.J. Saccheri. 2017. Evolution of adaptative phenotypic plasticity in male orange-tip butterflies. Ann. Zool. Fennici. 54: 225-236.

Gibbs, M., C. Wiklund, and H. van Dyck. 2011. Phenotypic plasticity in butterfly morphology in response to weather conditions during development. Journal of Zoology. 283: 162-168.

Holzenthal, R.W. 2008. Digital illustration for insects. American Entomologist. 54(4): 218-221.

Kartikasari, S.N., A.J. Marshall, and B.M. Beehler. 2012. Ekologi Papua. Yayasan Pustaka Obor Indonesia. Jakarta.

Kharouba, H.M., J.M.M. Lewthwaite, R. Guralnick, J.T.Kerr and M. Vellend. 2018. Using insect natural history collections to study global change impacts: Challenges and opportunities. Phil. Trans. R. Soc. B. 374: 1-10. http://dx.doi.org/10.1098/rstb.2017.0405.

Lehnert, M.S. 2010. New protocol for measuring Lepidoptera wing damage. J. Lepidopt. Soc. 64(1): 29-31.

Murren, C.J., J.R. Auld, H. Callahan, C.K. Ghalambor, C.A. Handelsman, M.A. Heskel, J.G.H.J. Maclean, J. Masel, H. Maughan, D.W. Pfenning, R.A. Relyea, S. Seiter, E. Snellood, and C.D. Schlichting. 2015. Constraints on the evolution of phenotypic plasticity: Limits and costs of pnenotype and plasticity (Rev). Heredity. 115: 293-301.

Merila, J., and A.P. Hendry. 2013. Climate Change, Adaptation, and Phenotypic Plasticity: the Problem and the Evidence. Evolutionary Application. John Wiley & Sons Ltd 7 (2014). ISSN 1752-4571: 1–14.

Moczek, A.P. 2010. Phenotypic plasticity and diversity in insects (Review). Phil. Trans. R. Soc. B. doi:10.1098/rstb.2009.0263. 365: 593-603.

Price, D.T., A. Qvarnstrom, and D.E. Irwin. 2003. The role of phenotypic plasticity in driving genetic evolution. Proc. R. Soc. Lond. B. 270: 1433–1440.

Robot, R., J.R.R. Sangari, and B.H. Toloh. 2018. Visualisasi data digital morfometrik daun Avicennia marina di perairan pantai Tongkaina dan Bintauna. Jurnal Ilmiah Platax. 6(1): 42-53.

Sourakov, A. 2015. Temperatere-dependent phenotypic plasticity in wing pattern of Utetheisa ornatrix Bella (Erebidae, Arctiinae). Trop. Lepid. Res. 25(1): 34-45.

Talloen, W., S. van Dongen, H. van Dyck, and L. Lens. 2009. Environmental stress and quantitative genetic variation in butterfly wing characteristics. Evolutionary Ecology. 23: 473-485.

van Mastrigt, H., E.R.P.F. Ramandey, and R. Mambrasar. 2010. Buku panduan lapangan kupu-kupu untuk wilayah kepala burung termasuk pulau-pulau Provinsi Papua Barat. Kelompok Entomologi Papua. KEP (Kelompok Entomologi Papua), Jayapura.

van Mastrigt, H. dan E.L. Warikar. 2013. Buku panduan lapangan kupu-kupu untuk wilayah pulau-pulau Teluk Cenderawasih terfokus pada Numfor, Supiori, Biak, dan Yapen. Kelompok Entomologi Papua. KEP (Kelompok Entomologi Papua). Jayapura.

Warikar, E.L., E.R.P.F. Ramandey, dan H.K. Maury. 2019. Analisis dimorfisme kupu-kupu sayap burung (Ornitopthera sp.) endemik Papua. Jurnal Biologi Papua. 11(1): 1–7.

Warsito, H., dan S. Yuliana. 2007. Keanekaragaman jenis burung di Saribi, Numfor Barat, Papua: Beberapa catatan. Jurnal Penelitian Hutan dan Konservasi Alam. 4(6): 553-560.

Yang, C.-H., and A. Pospisilik. 2019. Polyphenism- A window into gene-enviroment intecractions and phenotypic plasticity. Front. Genet. 10(132): 1-9. doi: 10.3389/fgene.2019.00132.

Downloads

Published

2021-10-01

Issue

Section

Research Articles