Peran Herpetofauna dalam Bidang Kesehatan: Peluang dan Tantangan

Aditya K. Karim, Zainal A. Wasaraka, Linus Y. Chrystomo, Ervina Indrayani


Skin secretions and venom from many species of amphibi (frogs and toads) and reptil (group of herpetofauna) from different famillies contain a wide range of unique physiological compounds with biological activity such as peptide, protein, non-protein, and enzyme. They are potent for drug development. The compounds, known as mode of action have practical application as pharmaceutical agents, diagnostic reagents or preparative tools. Peptides with potential anticancer, fibrinolityc, antibacterial, antifungal, antidiabetic activity play important roles in human health. This review introduces roles of herpetofauna for drugs development, potential therapeutic values and their application in human health and disease.

Key words: Herpetofauna, skin secretion, venom, drugs development, health.

Full Text:



Abdel-Wahab, Y.H., L. Marenah, D.V. Orr, C. Shaw, and P.R. Flatt. 2005. Isolation and structural characterisation of a novel 13-amino acid insulin-releasing peptide from the skin secretion of Agalychnis calcarifer. Biol. Chem. 386: 581–587.

Ardelt, W., H.S. Lee, G. Randolph, A. Viera, S.M. Mikulski, and K. Shogen. 1994. Enzymatic characterization of onconase, A novel ribonuclease with anti-tumor activity. Protein Sci. 3:137–47.

Bakta, I.M. 2007. Hematologi klinik ringkas. EGC-Penerbit Buku Kedokteran. Jakarta. 292 hal.

Constanzi, J., D. Sidransky, A. Navon, and H. Goldsweig. 2005. Ribonucleases as a novel pro-apoptotic anticancer strategy: Review of the preclinical and clinical data for ranpirnmase. Cancer. Invest. 23: 643–50.

Corwin, E.J. 2009. Patofisiologi. Edisi 3. EGC. Penerbit Buku Kedoktern. Jakarta. Hal. 441–520.

Dagan, A., L. Efron, L. Gaidukov, A. Mor, and H. Ginsburg. 2002. In vitro antiplasmodium effects of dermaseptins. Antimicrob. Agents. Chemother. 46: 1059–1066.

Debnath, A., U. Chatterjee and M. Das. 2007. Venom of Indian monocellate cobra and russell’s viper show anticancer activity in experiment models. J. Ethoparmacol. 111: 681-685.

Efron, L., A. Dagan, L. Gaidukov, H. Ginsburg, and A. Mor. 2002. Direct interaction of dermaseptin S4 aminoheptanoyl derivate with intra-erythrocytic malaria parasite leading to increased specific antiparasitic activity in culture. J. Biol. Chem. 277: 24067–24072.

Eng, J., W.A. Kleinman, L. Singh, G. Singh, and J.P. Raufmanll. 1992. Isolation and characterization of exendin-4, an exendin-3 analogue, from Heloderma suspecturn venom. J. Biol. Chem. 267(11): 7402–7406.

Furusawa, S. and J. Wu. 2007. The effects of biscoclaurine alkaloid cepharanthine on mammalian cells: Implications for cancer, shock and inflammatory diseases. Life Sciences. 80: 1073–1079 .

Gasmi, A., A. Chabchoub, S. Guermazi, H. Karoui, M. Elayeb, and K. Dellagi. 1997. Further characterization and thrombolytic activity in rat model of a fibrinogenase from Vipera lebetina venom. Thomb. Res. 86: 233–240.

Gomes, A. and P. De. 1999. Hannapep: A novel fibrinolytic peptide from the Indian king cobra Ophiphagus hannah venom. Biochem. Biophys. Res. Comm. 266: 491.

Grieve, D.J., R.S. Cassidy, and B.D. Green. 2009. Emerging cardiovascular actions of the incretin hormone glucagon-like peptide-1: Potential therapeutic benefits beyond glycaemic control. Br. J. Pharmacol. 57(8): 1340–1351.

Hernandez, C., A. Mor and F. Dagger. 1992. Functional and structural damage in Leishmania mexicana exposed to the cationic peptide dermaseptin. European J. Cell. Biol. 59(2): 414–424.

Ian, A.C., P. Mold´eus, and S. Orrenius. 1988. Host biochemical defense mechanisms against prooxidants. Annual Rev. Pharmacol. Toxicol. 28: 189–212.

Ita, M.H., D. Halicka, T. Tanaka, A. Kurose, B. Ardelt, K. Shogen, and Z. Darzynkiewicz. 2008. Remarkable enhancement of cytotoxicity of onconase and cepharanthine when used in combination on various tumor cell lines. Cancer Biol. Therap. 7(7): 1104–1108.

Kim, J.S., S.S. Yoon, S.U. Kwon, J.H. Ha, E.J. Suh, and H.S. Chi. 2001. Treatment acut cerebral infarction with arginene esterase. A control study with heparin. Cerebrov. Dis. 11: 251.

Koh, D.C.I., A.A. Armugan and Jeyaseelan. 2006. Snake components and their application in bio medicine. Cell. Mol. Life. Sci. 63: 3030-3041.

Kresno, S.B. 2011. Ilmu Dasar Onkologi. Edisi Kedua. Badan Penerbit Fakultas Kedokteran Universitas Indonesia. Jakara. 409 hal.

Kustanovich, I., D.E. Shalev, M.Mikhlin, L. Gaidukov, and A. Mor. 2002. Structural requirements for potent versus selective cytotoxicity for antimicrobial dermaseptin s4 derivatives. J. Biol. Chem. 277(19): 16941–16951.

Laraba, D. F., M.F. Martin-Eauclaire, G. Mauco and P. Marchot. 1995 afaacytin, an alpha beta-fibrinogenase from cerastes cerastes (horned viper) venom, activates purified factor x and induces serotonin release from human blood platelets. Eur. J. Biochem. 233: 756–765.

Lee, I., A. Kalota, A.M. Gewirtz, and K. Shogen. 2007. Antitumor efficacy of the cytotoxic rnase, ranpirnase, on a549 human lung cancer xenografts of nude mice. Anticancer. Res. 27: 299–307.

Marenah L, P.R. Flatt, D.F. Orr, S. McClean, S. Shaw, and Y.H.A. Abdel-Wahab. 2004a. Skin secretion of the toad Bombina variegata contains multiple insulin-releasing peptides including bombesin and entirely novel insulinotropic structures. Biol. Chem. 385: 315-321.

Marenah, L., P.R. Flatt, D.F. Orr, C. Shaw, and Y.H.A. Abdel-Wahab. 2006. Skin secretions of Rana saharica frogs reveal antimicrobial peptides esculentins-1 and -1b and brevinins-1e and -2ec with novel insulin releasing activity. J. Endocrinology. 188: 1–9.

Marenah, L., P.R. Flatt, D.F. Orr, S. McClean, S. Shaw, and Y.H.A. Abdel-Wahab. 2004b. Isolation and characterisation of an unexpected class of insulinotropic peptides in the skin of the frog Agalychnis litodryas. Regulatory Peptide. 120: 33-38.

Markland, F.S. 1998. Snake venom fibrinogenolytic and fibrinolytic enzymes: a updated inventory. Thromb. Haemost. 79: 668-674.

Matanic, V.C.A., and V. Castilla. 2004. Antiviral activity of antimicrobial cationic peptides against junin virus and herpes simplex virus. Inter. J. Antimicrobial. Agents. 23(4): 382–389.

Mikulski, S., A. Viera, Z. Darzynkiewicz, and K. Shogen. 1992. Synergism between a novel amphibian oocyte ribonuclease and lovastatin in inducing cytostatic and cytotoxic effects in human lung and pancreatic carcinoma cell lines. Br. J. Cancer. 66: 304–310.

Mor, A, K. Hani, and P. Nicolas. 1994. The vertebrate peptide antibiotics dermaseptins have overlapping structural features but target specific microorganisms. J. Biol. Chem. 269(50): 31635-31641.

Mor, A., and P. Nicolas. 1994. Isolation and structure of novel defensive peptides from frog skin. European. J. Biochem. 219(1): 145-154.

Naglik, J.R., S.J. Challacombe, and B. Hube. 2003. Candida albicans secreted aspartyl proteinases in virulence and pathogenesis. Microbiol. Mol Biol. Rev. 67(3): 400-428.

Patlak, M. 2003. From viper”s venom to drugs design: treating hypertension. FASEB. J. 18: 421-426.

Pavlakis, N., and N.J. Vogelzang. 2006. Ranpirnase an antitumor ribonuclease; its potential role in malignant mesothelioma. Expert. Opin. Biol. Ther. 6: 1391–1399.

Pelengaris, S and M. Khan. 2006. The molecular biology of cancer. Blackwell Publishing. USA. pp: 251-277.

Pretzer, D., B.S. Schulteis, C.D. Smith, J.W. Mitchell, and M.C. Manning. 1993. Fibrolase. A fibrinolytic protein from snake venom. Pharm Biotechnol. 5: 287-314.

Sadikin, M. 2001. Biokimia Darah. Widya Medika. Jakarta. 127 hal.

Sai, K.P., P.N. Reddy, and M. Babu. 1995. Investigations on wound healing by using amphibian skin. Indian. J. Experim. Biol. 33(9): 673–676.

Siigur J., and E. Siigur. 1992. The direct acting fibrinogenolytic enzymes from snake venom. J. Toxicol. Review. 11: 19.

Siigur, E., K. Tonismagi, K. Trummal, M. Samel, H. Vija, J. Subbi, and J. Siigur. 2001. Factor X activator from Vipera lebetina snake venom moleculer characterizaion and substrate specificty. Biochem. Biophys Acta. 1568: 90.

Sitaram, N., K.P. Sai, S. Singh, K. Sankaran, and R. Nagaraj. 2002. Structure-function relationship studies on the frog skin antimicrobial peptide tigerinin. 1: Design of analogs with improved activity and their action on clinical bacterial isolates. Antimicrob. Agent. Chemother. 46(7): 2279-2283.

Taraphdar, A.K., M. Roy, and R.K. Bhattacharya. 2001. Natural product as inducer of apoptosis: implication for cancer theraphy and prevention. Curr. Scie. 80(11): 1387–1396.

Triplitt, C., and E. Chiquette. 2006. Exenatide: from the gila monster to the pharmacy. J. Am. Pharm. Assoc. 46(1): 44-52.

Van Compernolle, S.E., R.J. Taylor, K. Oswald-Richter, J. Jiang, B.E. Bouree, J.H. Bowie, M.J. Tyler, M. Conlon, D. Wade, C. Aiken, T.S. Dermody, V.N.K. Ramani, L.A. Rollins-Smith, and D. Unutmaz. 2005. Anti-microbial peptides from amphibian skin potently inhibit human immunodeficiency virus infection and transfer of virus from dendritic cells to t cells. J. Virol. 79(18): 11598-11606.

Venezia, R.S.N., L. Feder, L. Gaidukov, Y. Carmeli, and A. Mor. 2002. Antibacterial properties of dermaseptin s4 derivatives with in vivo activity. Antimicrobial Agents. Chemotherap. 46(3): 689–694.

William, G.T. 1991. Programmed cell death: apoptosis and oncogenesis. Cell. 65: 1097–1098.

Willis, T.W and A.T. Tu. 1988. Purification and biochemichal characterization of atroxase, a nonhemorragic fibrinoytic protease from western diamondback rattlesnake Venom. Biochem. 27: 4769.

Wu, Y., S.M. Mikulski, W. Ardelt, S.M. Rybak and R.J. Youle. 1993. A cytotoxic ribonuclease. Study of the mechanism of onconase cytotoxicity. J. Biol. Chem. 268: 10686–10693.

Yang, S.H., M.C. Lu, C.M. Chien C.H. Tsai, Y.J. Lu, T.C. Hour and S.R. Lin. 2005. Induction of apoptosis in human leukemia K562 cells by cardiotoxin III. Life Sciences. 76: 2513–2522.

Zairi, A., F. Tangy, K. Bouassida, and K. Hani. 2009. Dermaseptins and magainins: antimicrobial peptides from frogs’ skin-new sources for a promising spermicides microbicides. J. Biomed. Biotech. doi:10.1155/2009 /452567.

Zairi, A., F. Tangy, S. Saadi, and K. Hani. 2008. In vitro activity of dermaseptin S4 derivatives against genital infections pathogens. Regulatory Toxicol. Pharmacol. 50(3): 353-358.

Zasloff, M. 1987. Magainins, a class of antimicrobial peptides from xenopus skin: isolation, characterization of two active forms, and partial cdna sequence of a precursor. Proceedings of the National Academy of Sciences of the United States of America. 84(15): 5449-5453.



  • There are currently no refbacks.