Peran Chaperone Pada Tumbuhan: Mini Review

Authors

  • Ummi Wasilah Universitas Jember
  • Dian A.G. Perwitasari Universitas Jember
  • Mukhamad Su'udi Universitas Jember

DOI:

https://doi.org/10.31957/jbp.880

Abstract

Plants respond to various conditions in the surrounding environment, whether favorable conditions or vice versa. Abiotic and biotic factors affect plant responses such as temperature, humidity, salinity, insects and pathogens such as viruses and bacteria. Plants have a defense system in tolerancing stress from the surrounding environment, for example heat shock protein (HSP) is a chaperone protein that plays a role in plant defenses when experiencing stress to the temperature. HSP is classified into six families based on their molecular weight, namely HSP100, HSP90, HSP70, HSP60, HSP40, and small HSP. Each has a role in maintaining the stability of plant metabolism. HSP is especially important for correct protein refolding, preventing degradation and denaturation of protein. Key words: plants; chaperone; heat shock protein; refolding; protein denaturation.

Downloads

Download data is not yet available.

Author Biographies

Ummi Wasilah, Universitas Jember

Jurusan Biologi FMIPA Universitas Jember

Dian A.G. Perwitasari, Universitas Jember

Jurusan Biologi FMIPA Universitas Jember, Jember

Mukhamad Su'udi, Universitas Jember

Jurusan Biologi FMIPA Universitas Jember, Jember

References

Ahemad, M., and A. Malik. 2012. Bioaccumulation of heavy metals by zinc resistance bacteria isolated from agricultural soils irrigated with wastewater. Bacteriology Journal. 2: 12-21.

Alwaibi, M. 2011. Plant-heat shock protein: mini review. Journal of King Saud University. 23: 139-150.

Blatch, G.L., and A.L. Edkins. 2015. The networking of chaperones by co-chaperones. Switzerland: Springer International Publishing.

Boston, R.S., P.V. Viitanen, and E. Vierling. 1996. Molecular chaperones and protein folding in plants. Plant Molecular Biology. 32: 191-222.

Campbell, N.A., and J.B. Reece. 2008. Biologi. Edisi ke-8. Penerbit Erlangga. Jakarta.

Chi, Y.H., S.S. Koo, H.T. Oh, E.S. Lee, J.H. Park, K.A.T. Phan, S.D. Wi, S.B. Bae, S.K. Paeng, H.B. Chae, C.H. Kang, M.G. Kim, W.Y. Kim, D.J. Yun, and S.Y. Lee. 2019. The physiological functions of universal stress proteins and their molecular mechanism to protect plants from environmental stresses. Frontiers in Plant Science. 10: 1-13.

Hafren, A., D. Hoï¬us, G. Ronnholm, U. Sonnewald, and K. Makinen. 2010. HSP70 and its cochaperone CPIP promote potyvirus infection in Nicotiana benthamiana by regulating viral coat protein functions. Plant cell. 22: 523-535.

Hossain, M.A. S.H. Wani, S. Bhattacharjee, D.J. Burritt, and L.S.P Trans. 2016. Drought stress tolerance in plants, Volume 1. Switzerland: Springer.

Su, P.H., and H.M. Li. 2008. Arabidopsis stromal 70kD heat shock proteins are essential for plant development and important for thermotolerance of germinating seeds. Plant Physol. 146: 1231-1241.

Jackson, C.D., M. Akita, dan K. Keegstra. 2001. Molecular chaperones involved in chloroplast protein import. Biochim Biophys. Acta. 1541: 102-113.

Jin, P.C., and Y.S. Seo. 2015. Heat shoch protein: A review of the molecular chaperones for plant Immunity. Journal of the plant pathology Journal. 31(4): 323-333.

Kadota, Y. and K. Shirasu. 2012. The HSP90 complex of plants. Biochim. Biophys. Acta. 1823: 689-697.

Kityk, R., J. Kopp, I. Sinning, and M.P. Mayer. 2012. Structure and dynamics of the ATP-bound open conformation of HSP70 chaperone. Journal of Molecular Cell. 48(6): 863-874.

Kozeko, L.Y. 2019. The role of HSP90 chaperones in stability and plasticity of ontogenesis of plants under normal and stressful conditions (Arabidopsis thaliana). Cytology and Genetics. 53(2): 143–161.

Lee, J.G., A.M. Roseman, H.R. Saibil, and E. Vierling. 1997. A small heat shock protein stanbly binds heat-denaturated model substrates and can maintain a substrate in a folding-competent state. The Embo Jornal. 16(2): 659-671.

Lee, U., I. Ripflorido, S. Hong, J. Lurkindale, E. Waters, and E. Vierling. 2007. The Arabidopsis ClpB/Hsp100 family of proteins: chaperones for stress and chloroplast development. The Plant Journal. 49: 115-127.

Levitt, M., M, Gerstein, E. Huang, S. Subbiah, and J. Tsai. 1997. Protein folding: the endgame. Annu. Rev. Biochem. 66: 549-579.

Li, J., J. Soroka and J. Buchner. 2012. The Hsp90 chaperone machinery: conformational dynamics and regulation by co-chaperones. Biochim Biophys Acta. 1823: 624–635.

Liu, B. 2014. Heat shock protein gp96 as an immune chaperone of inflammation and cancer. Aust. J. Clin. Immunol. 1: 1014.

Liu, J.Z., and S.A. Whitham. 2013. Overexpression of a soybean nuclear localized type-III DnaJ domain containing HSP40 reveals its roles in cell death and disease resistance. Journal of Plant. 74: 110-121.

Nakamoto, H., and L. Vigh. 2007. The small heat shock protein and their clients. Cell Mol. Life sci. 64: 294-306.

Neumann, D.M., M. Emmermann. J. M. Thierfelder, N.U. Zur, M. Clericus, H.P Braun, L. Nover, and U.K. Schmitz. 1993. HSP68-a DNAK-like heatstress protein of plant mitochondria. Planta. 190: 32-43.

Park, C.J and Y.S. Seo. 2015. Heat shock proteins: A review of the molecular chaperones for plant immunity. Plant Pathol. J. 31(4): 323-333.

Prodromou, C., B. Panaretou, S. Chohan, G. Siligardi, R. O’Brien, J.E. Ladbury, S.M. Roe, P.W. Piper, and L.H. Pearl. 2000. The ATPase cycle of HSP90 drives a molecular clamp via transient dimerization of the N-terminal domains. EMBO. 19(16): 4383-4392.

Semiarti, E., dan Rozikin. 2015. Karakterisasi gen ketahanan terhadap suhu tinggi HSP70 pada anggrek Vanda tricolor var. Suavis forma Merapi. Pros Sem Nas Masy Indon. 1(3): 404-408.

Shaï¬kova, T.N., Y.V. Omelichkina, A.S. Soldatenko, A.G. Enikeev, T.V. Kopytina, T.M. Rusaleva, and O.D. Volkova. 2013. Tobacco cell cultures transformed by the hsp101 gene exhibit an increased resistance to Clavibacter michiganensis ssp. sepedonicus. Doklady Biol. Sci. 450: 165-167.

Soellick, T., J.F. Uhrig, G.L. Bucher, J.W Kellmann, and P.H. Schreier. 2000. The movement protein NSm of Tomato spotted wilt tospovirus (TSWV): RNA binding, interaction with the TSWV N protein, and identification of interacting plant proteins. Proc. Natl. Acad. Sci. USA. 97: 2373-2378.

Soepandi, D. 2013. Fisiologi adaptasi tanaman terhadap cekaman abiotik pada agroekosistem tropika. IPB Press. Bogor.

Trent, J.D. 1996. A review of acquired thermotolerance, heat-shock protein and molecular chaperone in archaea. Fems microbiol. Rev. 18: 249-256.

Trivedi, D.K., K.M.K. Huda, S.S. Gill, and N. Tuteja. 2016. Molecular chaperone: Structure, function, and role in plant abiotic stress tolerance. Abiotic Stress Response in Plants, First Edition. Wiley-VCH Verlag GmbH & Co. KgaA. India.

Wahid, A., and A. Shabbir. 2005. Induction of heat stress tolerance in barley seedlings by pre-sowing seed treatment with glycinebetaine. Journal of Plant Growth. 46: 133–141.

Wang, W., B. Vinocur, O. Shoseyov, and A. Altman. 2004. Role of plant heat-shock protein and molecular chaperones in the abiotic stress response. Atarends Plant Sci. 9: 244-252.

Wang, M., Z. Zou, Q. Li, K. Sun, X. Chen, and X. Li. 2017. The CsHSP17.2 molecular chaperone is essential for thermotoleranc in Camellia sinensis. [Science report]. 1-15.

Yamada, K., Y. Fukao, M. Hayashi, M. Fukazawa, I. Suzuki, and M. Nishimura. 2007 Cytosolic HSP90 regulates the heat shock response that is responsible for heat acclimation in Arabidopsis thaliana. Journal of Bio. Chem. 282: 37794-37804.

Zhang, J. H., L. J. Wang, Q.H. Pan, Y.Z. Wang, J.C. Zhan, and W.D. Huang. 2008. Accumulation and subcellular localization of heat shock protein in young grape leaves during cross-adaptation to temperature stresses. Science Horticulturae. 177: 231-240.

Zhaohi, X., and B.S Paul. 1998. GroEL/GroES: Structure and function of a two-stroke folding machine. Journal of Structural of Biology. 124(2): 129-141.

Downloads

Published

2019-10-31

Issue

Section

Research Articles