Analisis Perubahan Garis Pantai Menggunakan Digital Shoreline Analysis System: Studi Kasus Wilayah Pesisir Kota Jayapura, Provinsi Papua

Authors

  • Baigo Hamuna Universitas Cenderawasih
  • John Dominggus Kalor

DOI:

https://doi.org/10.31957/acr.v5i2.2725

Abstract

Study of shoreline change is an important step in understanding the dynamics in the coastal area in Jayapura City and is a first step to reduce the risk of coastal erosion and also minimize social, physical and economic losses. This research was conducted in the coastal area of Yos Sudarso Bay, Jayapura City, Papua Province by utilizing multi-temporal Landsat satellite imagery (Landsat 5 TM, Landsat 7 ETM+ and Landsat 8 OLI-TIRS) for 1994, 2000, 2007, 2014 and 2020. Analysis Shoreline changes are determined using the Digital Shoreline Analysis System (DSAS). End Point Rate (EPR), Net Shoreline Movement (NSM) and Linear Regression Rate (LRR) are used to calculate the rate of change of the coastline and predictions of change of the coastline for the next 10 years. The results showed that in the period 1994-2000 there was an area of 535749.22 m2 of abrasion and 399361.87 m2 of accretion. During the 2000-2007 period, 453,876.10 m2 of abrasion occurred and 447,121.39 m2 of accretion. In the 2007-2014 period there was 781,274.83 m2 of abrasion and 259,221.26 m2 of accretion. In the 20014-2020 period, 93,328.79 m2 of abrasion occurred and 74,204.42 m2 of accretion. Spatially, the coastal areas of Yos Sudarso Bay, Jayapura City, which experienced abrasion included Holtekamp Beach, Hamadi Beach, and a small part in Youtefa Bay, while those that experienced accretion included DOK II Beach, Entrop Beach, Ciberi Beach, in Youtefa Bay and Cape Ria. The shoreline changes rate (LRR) in the coastal area of Yos Sudarso Bay, Jayapura City due to abrasion in the period 1994 to 2020 is 0.89 m/year, while the shoreline change rate due to accretion is 0.70 m/year. Based on the prediction of shoreline changes at Holtekamp Beach, it is predicted that the highest abrasion will occur as far as 50.19 m with an average abrasion distance of 20.22 m, while the highest accretion is as far as 19.19 m with an average accretion distance of 10.55 m.

Downloads

Download data is not yet available.

References

Aiello, A., Canora, F., Pasquariello, G. dan Spilotro, G. 2013. Shoreline variations and coastal dynamics: A space–time data analysis of the Jonian littoral, Italy. Estuarine, Coastal and Shelf Science, 129: 124-135.

Angkotasan, A. M., Nurjaya, I. W. Dan Natih, N. M. 2017. Analisis perubahan garis pantai di pantai barat daya Pulau Ternate, Provinsi Maluku Utara. Jurnal Teknologi Perikanan dan Kelautan, 3(2): 11-22.

Armenio, E., Serio, F. D., Mossa, M. dan Petrillo, A. F. 2019. Coastline evolution based on statistical analysis and modeling. Natural Hazards and Earth System Sciences, 19(9): 1937-1953.

Baig, M. R. I., Ahmad, I. A., Shahfahad, Tayyab, M. dan Rahman, A. 2020. Analysis of shoreline changes in Vishakhapatnam coastal tract of Andhra Pradesh, India: an application of digital shoreline analysis system (DSAS). Annals of GIS, 26(4): 361-376.

Bengen, D. G. 2001. Pedoman Teknis Pengenalan dan Pengelolaan Ekosistem Mangrove. Bogor. PKSPL. Institut Pertanian Bogor.

Cui, B. -L. dan Li, X. -Y. 2011. Coastline change of the Yellow River estuary and its response to the sediment and runoff (1976–2005). Geomorphology, 127(1-2): 32-40.

Dey, M., Priyaa, S. dan Jena, B. K. 2021. A shoreline changes detection (2012-2021) and forecasting using digital shoreline analysis system (DSAS) tool: a case study of Dahej Coast, Gulf of Khambhat, Gujarat, India. Indonesian Journal of Geography, 53(2): 295-309

Elnabwy, M. T., Elbeltagi, E., El Banna, M. M., Elshikh, M. M. Y., Motawa, I. dan Kaloop, M. R. 2020. An approach based on Landsat images for shoreline monitoring to support integrated coastal management: a case study, Ezbet Elborg, Nile Delta, Egypt. ISPRS International Journal of Geo-Information, 9: 199.

Gornitz, V. M. 1991. Global coastal hazards from future sea level rise. Palaeogeography, Palaeoclimatology, Palaeoecology (Global and Planetary Change Section): 89 379-398.

Hamuna, B., Sari, A. N. dan Alianto. 2018. Kajian kerentanan wilayah pesisir ditinjau dari geomorfologi dan elevasi pesisir Kota dan Kabupaten Jayapura, Provinsi Papua. Jurnal Wilayah dan Lingkungan, 6(1): 1-14.

Kaiser, G. 2007. Coastal vulnerability to climate change and natural hazards. Disaster Reduction in Climate Change. Karlsruhe University.

Kaly, U., Pratt, C. dan Mitchell, J. 2004. The Environmental Vulnerability Index (EVI) 2004. SOPAC Technical Report 384. 323 pp. Diakses dari http://gsd.spc.int/sopac/evi/Files/EVI%202004%20Technical%20Report.pdf

Kankara, R. S., Selvan, S. C., Markose, V. J., Rajan, B. dan Arockiaraj, S. 2015. Estimation of long and short-term shoreline changes along Andhra Pradesh coast using remote sensing and GIS techniques. Procedia Engineering, 116: 855-862.

Ko, B. C., Kim, H. H. dan Nam, J. Y. 2015. Classification of potential water bodies using Landsat 8 OLI and a combination of two boosted random forest classifiers. Sensors, 15(6): 13763-13777.

Koulibaly, C. T. dan Ayoade, J. O. 2021. The application of GIS and remote sensing in a spatiotemporal analysis of coastline retreat in Rufisque, Senegal. Geomatics and Environmental Engineering, 15(3): 55-80.

Kumar, T. S., Nahendra, R. S., Nayak, S., Radhakrishnan, K. dan Suhu, K. C. 2010. Coastal vulnerability assessment for Orissa State, east coast of India. Coast Res. 26 (3): 523-534.

Marfai, M. A., Almohammad, H., Dey, S., Susanto, B. dan King, L. 2007. Coastal dynamic and shoreline mapping: multi-sources spatial data analysis in Semarang Indonesia. Environmental Monitoring and Assessment, 142(1-3): 297-308

Mujabar, S. dan Chandrasekar, N. 2011. A shoreline change analysis along the coast between Kanyakumari and Tuticorin, India, using digital shoreline analysis system. Geo-spatial Information Science, 14(4): 282-293.

Mutaqin, B. W. 2017. Shoreline changes analysis in Kuwaru coastal area, Yogyakarta, Indonesia: an application of the digital shoreline analysis system (DSAS). International Journal of Sustainable Development and Planning, 12(7): 1203-1214.

Nassar, K., Mahmod, W. E., Fath, H., Masria, A., Nadaoka, K. dan Negm, A. 2019. Shoreline change detection using DSAS technique: case of North Sinai coast, Egypt. Marine Georesources&

Geotechnology, 37(1): 81-95.

Nassar, K., Mahmod, W. E., Fath, H., Masria, A., Nadaoka, K. dan Negm, A. 2019. Shoreline change detection using DSAS technique: case of North Sinai coast, Egypt. Marine Georesources & Geotechnology, 37(1): 81-95.

Nath, A., Koley, B., Saraswati, S., Bhatta, B. dan Ray, B. C. 2021. Shoreline change and its impact on land use pattern and vice versa: a critical analysis in and around Digha area between 2000 and 2018 using geospatial techniques. Pertanika Journal of Science and Technology, 29(1): 331-348.

Nhan, N. T., Tung, N. X., Anh, B. T. B. dan Thanh, N. X. 2018. Application of remote sensing, GIS and digital shoreline analysis system (DSAS) to assess the changes of the Red River Bank in the area from Son Tay to Gia Lam (Hanoi). Journal of Marine Science and Technology, 18(3): 269-277

Pendleton, E. A., Thieler, E. R. dan Williams, S. J. 2010. Importance of coastal change variables in determining vulnerability to sea- and lake-level change. Journal of Coastal Research, 261(261): 176-183.

Purnaditya, N., I Gusti, N. dan I Gusti, B. 2012. Prediksi Perubahan Garis Pantai Nusa Dua dengan ONELINE Model. Ilmiah Elektronik Infrastruktur, 1-8.

Rumahorbo, B. T., Warpur, M., Hamuna, B. dan Tanjung, R. H. R. 2022. Analysis of shoreline changes along the coastal area of Biak Island (Biak Numfor Regency, Indonesia) using multitemporal Landsat images. Journal of Degraded and Mining Lands Management, 10(1): 3861-3870.

Rumahorbo, B. T., Warpur, M., Tanjung, R. H. R. dan Hamuna, B. 2023. Spatial analysis of coastal vulnerability index to sea level rise in Biak Numfor Regency (Indonesia). Journal of Ecological Engineering, 24(3): 113-125.

Ryabchuk, D., Spiridonov, M., Zhamoida, V., Nesterova, E., Sergeev, A., 2012. Long term and short-term coastal line changes of the Eastern Gulf of Finland. Problems of coastal erosion. Journal of Coastal Conservation, 16(3): 233-242.

Siswanto, A. D., Widi, A. P. dan Suntoyo. 2010. Analisa stabilitas garis pantai di Kabupaten Bangkalan. Ilmu Kelautan, 15(4): 221-230.

Thieler, E. R. dan Hammar-Klose, E. S. 2000. National Assessment of coastal vulnerability to Sea-Level Rise: Preliminary Result for the U.S. Pacific Coast. U.S. Geological Survey. Virginia USA.

Thieler, E. R., Himmelstoss, E. A., Zichichi, J. L. dan Ergul, A. 2009. Digital Shoreline Analysis System (DSAS) version 4.0, An ArcGIS extension for calculating shoreline change. U.S. Geological Survey Open-File Report 2008-1278.

Xu, H. 2006. Modification of normalized difference water index (NDWI) to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing, 27(14): 10-12.

Yulianto, F., Suwarsono, Maulana, T. dan Khomarudin, M. R. 2019. The dynamics of shoreline change analysis based on the integration of remote sensing and geographic information system (GIS) techniques in Pekalongan coastal area, Central Java, Indonesia. Journal of Degraded and Mining Lands Management, 6(3): 1789-1802.

Zonkouan, B. R. V., Bachri, I., Beda, A. H. Z. dan N’Guessan, K. A. M. 2022. Monitoring spatial and temporal scales of shoreline changes in Lahou-Kpanda (Southern Ivory Coast) using Landsat data series (TM, ETM+ and OLI). Geomatics and Environmental Engineering, 16(1): 145-158.

Downloads

Published

2022-12-30