Artikel Review: Aplikasi Inokulum Fungi Trichoderma spp. Untuk Pertumbuhan dan Penekan Fitopatogen
DOI:
https://doi.org/10.31957/jbp.2377Abstract
The growth of a plant is influenced by the availability of nutrients. To meet these nutritional needs, chemical fertilizers are still widely used. In addition to nutritional needs, the growth of a plant is also influenced by pathogenic microorganisms that cause disease. The emergence of diseases in plants causes chemical pesticides to be increasingly used. The continuous use of chemical fertilizers and chemical pesticides can make living organisms susceptible to high toxicity of chemical compounds. In addition, the impact has an impact on improper management of agricultural waste as well as polluting the environment when it has been burned or discharged into water bodies. One alternative to overcome these problems is the application of biological control using Trichoderma spp. Trichoderma spp inoculum application can significantly regulate the rate of plant growth and suppress the growth of plant pathogenic microorganisms. Trichoderma spp. including plant growth promoting microbes that have the ability to colonize plant roots so as to provide benefits to their host, modulate phytohormonal production, increase soil nutrient availability, stimulate plant growth and tolerance to biotic and abiotic stresses, and resistance to pathogens. Inoculum of Trichoderma spp. can be applied to plants through seeds, leaves, roots of seedlings, and soil. Based on literature review, it is known that the application of Trichoderma spp. inoculum showed a significant effect on plant growth and suppress the growth of pathogenic microorganisms.
Key words: Trichoderma spp.; inoculum; fungi; biofertilizer; biofungicide.
Downloads
References
Adnan, M., W. Islam, A. Shabbir, K.A. Khan, H.A. Ghramh, Z. Huang, H.Y.H. Chen, and G. Lu. 2019. Plant defense against fungal pathogens by antagonistic fungi with Trichoderma in focus. Microbial Pathogenesis, 129: 7-18.
Ahemad, M., and M. Kibret. 2014. Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J. King Saud Univ. 26: 1-20.
Alizadeh, H., K. Behboudi, M. Ahmazadeh, M. Javan-Nikkhah, C. Zamioudis, C.M.J. Pieterse, and P.A.H.M Bakker. 2013. Induced systemic resistance in Cucumber and Arabidopsis thaliana by the combination of Trichoderma harzianum Tr6 and Pseudomonas sp. Ps14. Biological Control. 65: 14-23.
Almeida, D.A., M.A.C. Horta, F.J.A. Ferreira, N.F. Murad, and A.P. de Souza. 2021. The synergistic actions of hydrolytic genes reveal the mechanism of Trichoderma harzianum for cellulose degradation. J. Biotechnol. 334: 1–10.
Amira, R.D., A.R. Roshanida, M.I. Rosli, M.S.F. Zahrah, J.M. Anuar, and C.N. Adha. 2011. Bioconversion of empty fruit bunches (EFB) and palm oil mill effluent (POME) into compost using Trichoderma virens. Afr. J. Biotechnol. 10: 18775–18780.
Ammor, M.S., C. Michaelidis, and G.J. Nychas. 2008. Insights into the role of quorum sensing in food spoilage. J. Food Prot. 71: 1510–1525.
Arora, N.K., T. Fatima, I. Mishra, and S. Verma. 2020. Microbe-based inoculants: Role in next green revolution in environmental concerns and sustainable development. Springer. Singapore.
Bader, A.N., G.L. Salerno, F. Covacevich, and V.F. Consolo. 2020. Native Trichoderma harzianum strains from Argentina produce indole-3 acetic acid and phosphorus solubilization, promote growth and control wilt disease on tomato (Solanum lycopersicum L.). Journal of King Saud University-Science. 32(1): 867–873.
Bansal, R., S. Pachauri, D. Gururajaiah, P.D. Sherkhane, Z. Khan, S. Gupta, K. Banerjee, A. Kumar, and P.K. Mukherjee. 2021. Dual role of a dedicated GAPDH in the biosynthesis of volatile and non-volatile metabolites- novel insights into the regulation of secondary metabolism in Trichoderma virens. Microbiological Research. 253: 126862. doi: 10.1016/j.micres.2021.126862.
BenÃtez, T., A.M. Rincón, M.C. Limón, and A.C. Codon. 2004. Biocontrol mechanisms of Trichoderma strains. Int. Microbiol. 7: 249–260.
Bissett, J. 1991. A revision of the genus Trichoderma. II. Infrageneric classification. Canadian Journal of Botany. 69(11): 2357-2372.
Bhat, M.A., R. Rasool, and S. Ramzan. 2019. Plant growth promoting Rhizobacteria (PGPR) for sustainable and eco-friendly agriculture. Acta Sci. Agric. 3: 23–25.
Cai, F., W. Chen, Z. Wei, G. Pang, R. Li, W. Ran, and Q. Shen. 2015. Colonization of Trichoderma harzianum strain SQR-T037 on tomato roots and its relationship to plant growth, nutrient availability and soil microflora. Plant Soil. 388: 337–350.
Carvalhais, L.C., P.G. Dennis, D.V. Badri, B.N. Kidd, J.M. Vivanco, and P.M. Schenk. 2015. Linking jasmonic acid signaling, root exudates, and rhizosphere microbiomes. Mol. Plant-Microbe Interact. 28: 1049–1058.
Chao, W., and Z. Wen-Ying, 2019. Evaluating effective trichoderma isolates for biocontrol of Rhizoctonia solani causing root rot of Vigna unguiculata. Journal of Integrative Agriculture. 18(9): 2072–2079.
Chilosi, G., M.P. Aleandri, E. Luccioli, S.R. Stazi, R. Marabottini, C. Morales-RodrÃguez, A.M, Vettraino, A. Vannini. 2020. A suppression of soil-borne plant pathogens in growing media amended with espresso spent coffee grounds as a carrier of Trichoderma spp.. Scientia Horticulturae. 259 (2020): 108666. https://doi.org/10.1016/j.scienta.2019.108666.
Eke, P., L.N. Wakam, P.V.T. Fokou, T.V. Ekounda, K.P. Sahu, T.H.K. Wankeu, and F.F. Boyom. 2019. Improved nutrient status and Fusarium root rot mitigation with an inoculant of two biocontrol fungi in the common bean (Phaseolus vulgaris L.). Rhizosphere. 12(2019): 100172. https://doi.org/10.1016/j.rhisph.2019.100172
Eslahi, N., M. Kowsari, M. Motallebi, M.R. Zamani, and Z. Moghadasi. 2019. Influence of recombinant Trichoderma strains on growth of bean (Phaseolus vulgaris L.) by increased root colonization and induction of root growth related genes. Scientia Horticulturae. 261(2020): 108932. https://doi.org/10.1016/j.scienta.2019.108932.
El Komy, M.H., A.A. Saleh, A. Eranthodi, and Y.Y. Molan. 2015. Characterization of novel Trichoderma asperellum isolates to select effective biocontrol agents against tomato Fusarium Wilt. Plant Pathol. 31: 50-60.
Gajera, H., D. Hirpara, D. Savaliya, and B.A. Golakiya. 2020. Extracellular metabolomics of Trichoderma biocontroller for antifungal actiont to restrain Rhizoctonia solani Kuhn in cotton. Physiological and Molecular Plant Pathology. 112(2): 101547.
Gasparetti, C., E. Nordlund, J. Jänis, J. Buchert, and K. Kruus. 2012. Biochimica et biophysica acta extracellular tyrosinase from the fungus Trichoderma reesei shows product inhibition and different inhibition mechanism from the intracellular tyrosinase from Agaricus bisporus. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics. 1824(4): 598-607.
Gava, C.A.T., and J.M. Pinto. 2016. Biocontrol of melon wilt caused by Fusarium oxysporum Schlect f.sp. melonis using seed treatment with Trichoderma spp. and liquid compost. Biol. Control. 97: 13–20.
Goh, T.B., R.E. Karamanos, and J. Lee. 2013. Effects of phosphorus form on short-term solubility and availability in soils. Communications In Soil Science and Plant Analysis. 44(1-4): 136-144.
Gouda S., R.G. Kerry, G. Das, S. Paramithiotis, H.S. Shin, and J.K. Patra. 2018. Revitalization of plant growth promoting Rhizobacteria for sustainable development in agriculture. Microbiol. 206: 131–140.
Heidari, F., and M. Olia. 2016. Biological control of root-knot nematode Meloidogyne javanica using vermicompost and fungus Trichoderma harzianum on tomato. J. Plant Pathol. 52: 109–124.
Hernández-Montiel, L.G., C.J. Chiquito-Contreras, B. Murillo-Amador, L. Vidal-Hernández, E.E. Quiñones-Aguilar, and R.G. Chiquito-Contreras. 2017. Efficiency of two inoculation methods of Pseudomonas putida on growth and yield of tomato plants. Soil Sci Plant Nutr. 17: 1003-1012.
Hyakumachi, M. and M. Kubota. 2003. Fungi as plant growth promoter and disease suppressor. In: Fungal biotechnology in agricultural, food and environmental application. Arora D. K. (ed) Marcel Dekker.
Ji, S., Liu, Z., Liu, B., Wang, Y., and Wang, J. 2020. The effect of Trichoderma biofertilizer on the quality of flowering Chinese cabbage and the soil environment. Scientia Horticulturae. 262(2020): 109069. https://doi.org/ 10.1016/j.scienta.2019.109069.
Khan, N., A. Bano, S. Ali, and M.d.A. Babar. 2020. Crosstalk amongst phytohormones from planta and PGPR under biotic and abiotic stresses. Plant Growth Regul. 90: 189–203.
Konappa, N., S. Krishnamurthy, U.C. Arakere, S. Chowdappa, and N.S. Ramachandrappa. 2020. Efficacy of indigenous plant growth-promoting Rhizobacteria and Trichoderma strains in eliciting resistance against bacterial wilt in a tomato. Egyptian Journal of Biological Pest Control. 30(106): 1–13.
Kubheka, B.P., and L.W. Ziena. 2022. Trichoderma: A biofertilizer and a bio-fungicide for sustainable crop production. Intechopen. London.
Kumar, R., K. Kumari, K.C. Hembram, L. Kandha, and B.K. Bindhani. 2019. Expression of anendo Α-1, 3-glucanase gene from Trichoderma harzianum in rice induces resistance against sheath blight. J. Plant Biochem. Biotechnol. 28: 84–90.
Kumar, S., S.S. Diksha, Sindhu, and R. Kumar. 2021. Biofertilizers: an ecofriendly technology for nutrient recycling and environmental sustainability. Current Research in Microbial Sciences. 3(2022): 100094. https://doi.org/10.1016/j.crmicr.2021.100094.
Lopes, M. J., M.B.D. Filho, T.H.R. Castro, and G.B. Silva. 2018. Light and plant growth-promoting rhizobacteria effects on Brachiaria brizantha growth and phenotypic plasticity to shade. Grass and Forag Sci. 73: 493–499.
Lucini, L., G. Colla, M.B.M. Moreno, L. Bernardo, M. Cardarelli, V. Terzi, P. Bonini, and Y. Rouphael. 2019. Inoculation of Rhizoglomusir regulare or Trichoderma atroviride differentially modulates metabolite proï¬ling of wheat root exudates. Phytochemistry. 157: 158–167.
MacÃas-RodrÃguez, L., H.A. Contreras-Cornejo, S.G. Adame-Garnica, R. Del-Val, J. and Larsen. 2020. The interactions of Trichoderma at multiple trophic levels: inter-kingdom. Microbiological Research. 240: 126552.
MartÃnez-Viveros, O., M.A. Jorquera, D.E. Crowley, G. Gajardo, and M.L. Mora. 2010. Mechanisms and practical considerations involved in plant growth promotion by Rhizobacteria. J. Soil Sci. Plant Nutr. 10: 293–319.
Marzano, M., A. Gallo, and C. Altomare. 2013. Improvement of biocontrol efficacy of Trichoderma harzianum Vs. Fusarium oxysporum F.sp. Lycopersici through UV-induced tolerance to fusaric acid. Biological Control. 67(3): 397–408.
Mei L.I., M.A. Guang-shu, L. Hua, S.U. Xiao-lin, T. Ying, H. Wen-kun, M. Jie, and J. Xiliang. 2019. The effects of Trichoderma on preventing Cucumber Fusarium Wilt and regulating cucumber physiology. J Integr Agric. 18(3): 607–617.
Mercl, F., M. GarcÃa-Sánchez, M. Kulhánek, Z. KoÅ¡nář, J. Száková, and P. TlustoÅ¡. 2020. Improved phosphorus fertilisation efficiency of wood ash by fungal strains Penicillium sp. PK112 and Trichoderma harzianum OMG08 on acidic soil. Applied Soil Ecology. 147(2020): 103360. https://doi.org/10.1016/j.apsoil.2019.09.010.
Mukhopadhyay, R., and D. Kumar. 2020. Trichoderma: A beneficial antifungal agent and insights into its mechanism of biocontrol potential. Egypt J. Biol Pest Control. 30: 133. https://doi.org/10.1186/s41938-020-00333-x.
Pellegrini, A., D. Prodorutti, and I. Pertot. 2014. Use of bark mulch pre-inoculated with Trichoderma atroviride to control Armillaria Root Rot. Crop Protection. 64: 104-109.
Poveda, J., and P. Baptista. 2021. Filamentous fungi as biocontrol agents in olive (Olea europaea L.) diseases: Mycorrhizal and endophytic fungi. Crop Protection. 146(2021): 105672. https://doi.org/10.1016/j.cropro. 2021.105672.
Popp, J., K. Pető, and J. Nagy. 2012. Pesticide productivity and food security. A review. Agronomy Sustain Dev. 33: 243–255.
Ren, W., J. Xie, X. Hou, X. Li, H. Guo, N. Hu, L. Kong. J. Zhang, C. Chang, and Z. Wu. 2018. Potential molecular mechanisms of overgrazing-induced dwarfism in sheepgrass (Leymus chinensis) analyzed using proteomic data. BMC Plant Biol. 18: 81. https://doi.org/10.1186/s12870-018-1304-7.
Rocha-Ramirez, V., C. Omero, I. Chet, B.A. Horwitz, and A. Herrera-Estrella. 2002. Trichoderma atroviride G-protein alpha-subunit gene tga1 is Involved in mycoparasitic coiling and conidiation. Eukaryot Cell. 1(4): 594–605.
Rokni, N., H.S. Alizadeh, E. Bazgir, M. Darvishnia, and H.M. Najafgholi. 2021. The tripartite consortium ff Serendipita indica, Trichoderma simmonsii, and bell pepper (Capsicum annum). Biological Control. 158: 104608. doi: 10.1016/j.biocontrol.2021.104608.
Romeiro, R.S. 2007. Controle biológico de doenças de plantas: procedimentos. Viçosa, MG: Universidade Federal de Viçosa. Brazil.
Santiago, A.D., A.M. GarcÃa-lópez, J.M. Quintero, M. Avilés, and A. Delgado. 2013. Soil biology & biochemistry effect of Trichoderma asperellum strain T34 and glucose addition on iron nutrition in Cucumber grown on calcareous soils. Soil Biology and Biochemistry. 57: 598-605.
Siemering, G., M. Ruark, and A. Geven. 2016. The value of Trichoderma for crop production. University of Wisconsin–Extension, Cooperative Extension. Madison.
Singh, S., A. Tripathi, D. Maji, A. Awasthi, P. Vajpayee, and A. Kalra. 2019. Evaluating the potential of combined inoculation of Trichoderma harzianum and Brevibacterium halotolerans for increased growth and oil yield in Mentha arvensis under greenhouse and field conditions. Elsevier. 131: 173-181.
Singh, B., I. Boukhris, K. Pragya, A.N. Yadav, and A. Farhat-Khemakhem. 2020. Contribution of microbial phytases to the improvement of plant growth and nutrition: A review. Pedosphere. 30(3): 295-313.
Souza, R., A. de Ambrosini, and L.M.P. Passaglia. 2015. Plant growth-promoting bacteria as inoculants in agricultural soils. Genet Mol Biol. 38: 401–419.
Stewart, W.M., and T.L. Roberts. 2012. Food security and the role of fertilizer in supporting it. Elesvier. Amsterdam.
Suebrasri, T., H. Harada, S. Jogloy, J. Ekprasert, and S. Boonlue. 2020. Auxin-producing fungal endophytes promote growth of sunchoke. Rhizosphere. 16(2020): 100271. https://doi.org/10.1016/j.rhisph.2020.100271.
Swain, H., T. Adak, A.K. Mukherjee, P.K. Mukherjee, P. Bhattacharyya, S. Behera, T.B. Bagchi, R. Patro, S. Shasmita, A. Khandual, M.K. Bag, T.K. Dangar, S. Lenka, and M. Jena. 2021. Novel Trichoderma strains. Isolated from tree barks as potential biocontrol agents and biofertilizers for direct seeded rice. Microbiological Research. 214: 83-90.
Woo, S., M, Ruocco, F. Vinale, and M. Nigro. 2014. Trichoderma-based products and their widespread use in agriculture. The Open Mycology Journal. 8(1): 71-126.
Valentinuzzi, F., S. Cesco, N. Tomasi, and T. Mimmo. 2016. Rhizosphere effect of aluminium exposure on the release of organic acids and genistein from the roots of Lupinus albus L. plants. Rhizosphere. 1: 29-32.
Waghunde, R. 2016. Trichoderma: A significant fungus for agriculture and environment. African Journal of Agricultural Research. 11(22): 1952-196.
Yadav, R.L., A. Suman, S.R. Prasad, and O. Prakash. 2009. Effect of Gluconacetobacter diazotrophicus and Trichoderma viride on soil health, yield and N-economy of sugarcane cultivation under subtropical climatic conditions of India. European Journal of Agronomy. 30(4): 296-303.
Yu, Z., Z. Wang Y. Zhang, Y. Wang, dan Z. Liu. 2021. Biocontrol and growth-promoting effect of Trichoderma asperellum TaspHu1 isolate from Juglans mandshurica rhizosphere soil. Microbiological Research. 242: 126596. doi: 10.1016/j.micres.2020.126596.
Zhang, Y., and W. Zhuang. 2020. Trichoderma brevicrassum strain TC967 with capacities of diminishing Cucumber disease caused by Rhizoctonia solani and promoting plant growth. Biological Control. 142(2020): 104151. https://doi.org/10.1016/j.biocontrol.2019.104151.
Zhu, Z.X., and W.Y. Zhuang. 2015. Trichoderma (Hypocrea) species with green ascospores from China. Persoonia. 34: 113-129.
Zin, N. A. and Badaluddin, N. A. 2020. Biological Functions of Trichoderma spp. For Agriculture Applications. Annals of Agricultural Sciences, 65 (2): 168-178.