Analisis Polimorfisme Gen dan Aplikasinya Dalam Klinik

Authors

DOI:

https://doi.org/10.31957/jbp.2479

Abstract

Gene polymorphism refers to a variation in DNA sequence that occurs in a population with a frequency of 1% or higher. Polymorphism may be a variation in single nucleotide (SNP) or a variation in some repetitive DNA sequences (length polymorphism). Several methods can be used to analyze polymorphism, included Polymerase Chain Reaction (PCR), DNA sequencing from the conventional method to more sophisticated method such as Next Generation Sequencing (NGS), fluorescence in situ hybridization, comparative genomic hybridization, and DNA microarrays. Recently, more studies have been carried out to find the relationship between polymorphism and disease severity or prognosis, response to various drugs, susceptibility to environtmental factors such as toxins, susceptibility to infections and cancers.

Key words: DNA; gene polymorphism; PCR; clinic.

Downloads

Download data is not yet available.

Author Biography

Corry N. Mahama, PDIB Fakultas Kedokteran Universitas Indonesia

Kedokteran

References

Aryal, S. 2022. DNA sequencing: Maxam–Gilbert and Sanger Dideoxy method. Retrieved September 19, 2022. https://microbenotes.com/dna-sequencing-maxam-gilbert-and-sanger-dideoxy-method/.

Atawodi, S., J. Atawodi, and A. Dzikwi. 2011. Polymerase chain reaction: Theory, practice and application: A review. Sahel Medical Journal. 13(2): 54–63. https://doi.org/10.4314/smj2.v13i2.64834.

Bejjani, B. A., and L.G. Shaffer. 2006. Application of array-based comparative genomic hybridization to clinical diagnostics. Journal of Molecular Diagnostics. 8(5): 528–533. https://doi.org/10.2353/jmoldx.2006.060029.

Bisht, S. S., and A.K. Panda. 2014. DNA sequencing: Methods and applications. In: I. Ravi, M. Baunthiyal, and J. Saxena (Eds.), Advances in Biotechnology. pp: 11–23. https://doi.org/10.1007/978-81-322-1554-7.

Chiarella, P., P. Capone, and R. Sisto. 2020. The role of genetic polymorphisms in the occupational exposure. In: The recent topics in genetic polymorphisms. p.: 13. https://doi.org/10.5772/intechopen.86975.

Cowell, J.K., K.C. Lo, J. Luce, and L. Hawthorn. 2010. Interpreting aCGH-defined karyotypic changes in gliomas using copy number status, loss of heterozygosity and allelic ratios. Experimental and Molecular Pathology. 88(1): 82–89. https://doi.org/ 10.1016/j.yexmp.2009.09.014.

Cui, C., W. Shu, and P. Li. 2016. Fluorescence in situ hybridization: Cell-based genetic diagnostic and research applications. Frontiers in Cell and Developmental Biology. 4: 1–11. https://doi.org/10.3389/fcell. 2016.00089.

de Vries, B.B.A., R. Pfundt, M. Leisink, D.A. Koolen, L.E.L.M. Vissers, I.M. Janssen, S. van Reijmersdal, W.M. Nillesen, E.H.L.P.G. Huys, N. de Leeuw, D. Smeets, E.A. Sistermans, T. Feuth, C.M.A. van Ravenswaaij-Arts, A.G. van Kessel, E.F.P.M. Schoenmakers, H.G. Brunner, and J.A. Veltman. 2005. Diagnostic genome profiling in mental retardation. American Journal of Human Genetics. 77(4): 606–616. https://doi.org/10.1086/491719.

Demkow, U. 2016. Next generation sequencing in pharmacogenomics. In: Clinical applications for next-generation sequencing. https://doi.org/10.1016/B978-0-12-801739-5.00011-8.

Dieter, C., L. de A. Brondani, C.B. Leitão, F. Gerchman, N.E. Lemos, and D. Crispim. 2022. Genetic polymorphisms associated with susceptibility to COVID-19 disease and severity: A systematic review and meta-analysis. PloS One. 17(7): e0270627. https://doi.org/10.1371/journal. pone.0270627

França, L.T. C., E. Carrilho, and T.B. Kist. 2002. A review of DNA sequencing techniques. Quarterly Reviews of Biophysics. 35(2): 169–200. https://doi.org/10.1017/ S0033583502003797.

Gilbert, N., S. Boyle, H. Fiegler, K. Woodfine, N.P. Carter, and W.A. Bickmore. 2004. Chromatin architecture of the human genome: Gene-rich domains are enriched in open chromatin fibers. Cell. 118(5): 555–566. https://doi.org/10.1016/j.cell.2004.08.011.

Govindarajan, R., J. Duraiyan, K. Kaliyappan, and M. Palanisamy. 2012. Microarray and its applications. Journal of Pharmacy and Bioallied Sciences. 4(2): S310-2. https://doi.org/10.4103/0975-7406.100283.

Hainsworth, J.D., F. Meric-Bernstam, C. Swanton, H. Hurwitz, D.R. Spigel, C. Sweeney, H. Burris, R. Bose, B. Yoo, A. Stein, M. Beattie, and R. Kurzrock. 2018. Targeted therapy for advanced solid tumors on the basis of molecular profiles: Results from mypathway, an open-label, phase IIA multiple basket study. Journal of Clinical Oncology. 36(6): 536–542. https://doi.org/10.1200/JCO. 2017.75.3780

Imyanitov, E.N., K.G. Buslov, E.N. Suspitsin, E.S. Kuligina, E.V. Belogubova, M.Y. Grigoriev, A.V. Togo, and K.P. Hanson. 2002. Improved reliability of allele-specific PCR. BioTechniques. 33(3): 484–490. https://doi.org/ 10.2144/02333bm04.

Karlovich, C.A., and P.M. Williams. 2019. Clinical applications of next-generation sequencing in precision oncology. Cancer Journal. 25(4): 264–271. https://doi.org/10.1097/PPO.00000000 0000 0385.

Klijn, C., H. Holstege, J. de Ridder, X. Liu, M. Reinders, J. Jonkers, and L. Wessels. 2008. Identification of cancer genes using a statistical framework for multiexperiment analysis of nondiscretized array CGH data. Nucleic Acids Research. 36(2): e13–e13. https://doi.org/ 10.1093/nar/gkm1143.

Krepischi, A.C.V., D. Villela, S.S. da Costa, P.C. Mazzonetto, J. Schauren, M.P. Migliavacca, F. Milanezi, J.G. Santos, G. Guida, R. Guarischi-Sousa, G. Campana, F. Kok, D. Schlesinger, J.P. Kitajima, F. Campagnari, D.R. Bertola, A.M. Vianna-Morgante, P.L. Pearson, and C. Rosenberg. 2022. Chromosomal microarray analyses from 5778 patients with neurodevelopmental disorders and congenital anomalies in Brazil. Scientific Reports. 12(1): 15184. https://doi.org/10.1038/s41598-022-19274-6.

Kuehl, W. M., and P.L. Bergsagel. 2002. Multiple myeloma: Evolving genetic events and host interactions. Nature Reviews Cancer. 2(3): 175–187. https://doi.org/ 10.1038/nrc746.

Levy, B., and R.D. Burnside. 2019. Are all chromosome microarrays the same? What clinicians need to know. Prenatal Diagnosis. 39(3): 157–164. https://doi.org/ 10.1002/pd.5422

Levy, B., T.M. Dunn, S. Kaffe, N. Kardon, and K. Hirschhorn. 1998. Clinical applications of comparative genomic hybridization. Genetics in Medicine. 1(1): 4–12. https://doi.org/10.1097/00125817-199811000-00004.

Mangat, P.K., S. Halabi, S.S. Bruinooge, E. Garrett-Mayer, A. Alva, K.A. Janeway, P.J. Stella, E. Voest, K.J. Yost, J. Perlmutter, N. Pinto, E.S. Kim, and R.L. Schilsky. 2018. Rationale and design of the targeted agent and profiling utilization registry (TAPUR) study. JCO Precision Oncology. 2018(2): 1–14. https://doi.org/10.1200/ PO.18.00122.

Mitchell, S.L., and P.J. Simner. 2019. Next-generation sequencing in clinical microbiology: Are we there yet?. Clinics in Laboratory Medicine. 39(3): 405–418. https://doi.org/10.1016/j.cll.2019.05.003.

Nusrath, A., and P.T.B. Raiza. 2015. Review on single nucleotide polymorphism analysis methods. International Journal of Engineering Research and Technology (IJERT). 3(30): 1–4. https://doi.org/ 10.17577/IJERTCONV3IS30005.

Park, S.J., E.H. Jung, R.S. Ryu, H.W. Kang, H.D. Chung, and H.Y. Kang. 2013. The clinical application of array CGH for the detection of chromosomal defects in 20,126 unselected newborns. Molecular Cytogenetics. 6(1): 1–5. https://doi.org/10.1186/1755-8166-6-21.

Putra, G., L. Angeline, C.J. Yonathan, N.I. Niedhatrata, M.H.R. Firdaus, and J.R. Yoewono. 2020. A review of the development of polymerase chain reaction technique and its uses in scientific field. Stannum : Jurnal Sains dan Terapan Kimia. 2(1): 14–30. https://doi.org/10.33019/jstk.v2i1.1619.

Qin, D. 2019. Next-generation sequencing and its clinical application. Cancer Biology and Medicine. 16(1): 4–10. https://doi.org/10.20892/j.issn.2095-3941.2018.0055.

Rahman, A. E., A. Iqbal, D.M.E. Hoque, M. Moinuddin, S. bin Zaman, Q.S.U. Rahman, T. Begum, A.I. Chowdhury, R. Haider, S. El Arifeen, N. Kissoon, and C.P. Larson. 2017. Managing neonatal and early childhood syndromic sepsis in sub-district hospitals in resource poor settings: Improvement in quality of care through introduction of a package of interventions in rural Bangladesh. PLoS ONE. 12(1): 1–19. https://doi.org/10.1371/journal. pone.0170267.

Ratan, Z.A., S. bin Zaman, V. Mehta, M.F. Haidere, N.J. Runa, and N. Akter. 2017. Application of fluorescence in situ hybridization (FISH) technique for the detection of genetic aberration in medical science. Cureus. 9(6): e1325. https://doi.org/10.7759/cureus.1325.

Shakoori, A.R. 2017. Fluorescence in situ hybridization (FISH) and its applications. In: T. Bhat and A.A. Wani (Eds.), Chromosome Structure and Aberrations. pp.: 343–367. https://doi.org/10.1007/978-81-322-3673-3_16.

Somak, R. 2022. Molecular anatomic pathology. Principles, techniques, and application to immunohistologic diagnosis. In: D.J. Dabbs (Ed.). Diagnostic Immunohistochemistry. https://doi.org/10.1016/B978-1-4160-5766-6.00006-6.

Swerdlow, S., E. Campo, N. Harris, E. Jaffe, S. Pileri, H. Stein, and J. Thiele. 2017. WHO classification of tumours of haematopoietic and lymphoid tissues. (4th ed.). Lyon: International Agency for Research on Cancer.

Vasilieva, L. E., S.I. Papadhimitriou, and S.P. Dourakis. 2012. Modern diagnostic approaches to cholangiocarcinoma. Hepatobiliary and Pancreatic Diseases International. 11(4): 349–359. https://doi.org/10.1016/S1499-3872(12)60192-1.

Weickhardt, A.J., D.L. Aisner, W.A. Franklin, M. Varella-Garcia, R.C. Doebele, and D.R Camidge. 2013. Diagnostic assays for identification of anaplastic lymphoma kinase-positive non-small cell lung cancer. Cancer. 119(8): 1467–1477. https://doi.org/10.1002/ cncr.27913.

Wertheim, G.B.W., E. Hexner, and A. Bagg. 2012. Molecular-based classification of acute myeloid leukemia and its role in directing rational therapy: Personalized medicine for profoundly promiscuous proliferations. Molecular Diagnosis and Therapy. 16(6): 357–369. https://doi.org/10.1007/s40291-012-0009-0.

Downloads

Published

2023-04-01

Issue

Section

Review Articles