Serangga Polinator (Lepidoptera: Superfamili Papilionoidea) Guna Mendukung Pertanian Berkelanjutan di Lahan Agro-Ekosistem

Authors

  • Daawia Daawia Universitas Cenderawasih
  • Nurlita Dianingsih Universitas Cenderawasih
  • Yuliandra M. Numberi Universitas Cenderawasih
  • Bambang Suhartawan Universitas Sains dan Teknologi Jayapura

DOI:

https://doi.org/10.31957/jbp.3365

Keywords:

Lycaenidae , Nymphalidae , pollinator , Papilionidae, Pieridae

Abstract

This research aimed to determine the role of butterflies as pollinators of various horticultural plants and wild flowering plants at the agro-ecosystem in Arso District, Keerom Regency. Data collection on butterfly nectar sources used the Visual Count Method and All Out Search Method (AOSM) at Arso District every week for 4 months (May-August 2023). From the survey results, it was discovered 32 species of butterflies of Superfamily Papilionoidea that consisted of Paplionidae (9 species), Pieridae (6 species), Nymphalidae (12 species) and Lycaenidae (5 species). These butterflies visited flowering plants as a source of nectar. It was found 25 species of flowering plants consisting of 10 families which were sources of nectar for butterflies, namely Asteraceae, Rubiaceae, Malvaceae, Lamiaceae, Orchidaceae, Verbenaceae, Fabaceae, Amaranthaceae, Cucurbitaceae, and Rutaceae. The flowering plants most visited by butterflies were Bidens pilosa (15 species), Stachytarpheta urticaefolia (14 species), and Lantana camara (10 species). Asteraceae is the family of flowering plants most visited by butterflies, recorded 19 species. Butterflies have an important role in helping to pollinate wild flowering plants and horticultural plants in the agroecosystem in Arso District. The Papilionidae and Nymphalidae families were efficient pollinators because of their high mobility and large body size which could transfer more pollen from one flower to another. Pieridae visit more flowering plants than any other butterfly family, of the 25 species of flowering plants, 23 of them are visited by Pieridae. Even though the Lycaenidae are less efficient in helping pollination because they visit more limited flowers as a result of their limited body size and flight power, especially plants that had small flowers such as bitter melon, long beans and cucumbers. 

Key words: Lycaenidae; Nymphalidae; pollinator;  Papilionidae;  Pieridae.  

Downloads

Download data is not yet available.

Author Biographies

Daawia Daawia, Universitas Cenderawasih

Jurusan Biologi FMIPA Universitas Cenderawasih 

Nurlita Dianingsih, Universitas Cenderawasih

Jurusan Biologi FMIPA Universitas Cenderawasih 

Yuliandra M. Numberi, Universitas Cenderawasih

Jurusan Biologi FMIPA Universitas Cenderawasih 

Bambang Suhartawan, Universitas Sains dan Teknologi Jayapura

Jurusan Tehnik Lingkungan, FTSP, Universitas Sains dan Teknologi Jayapura

References

Baker, H.G., and I. Baker. 1983. Floral nectar sugar consttuents in relaton to pollinator type. pp. 117–141. In: Jones, C.E. & R.J. Litle (eds.). Handbook of Experimental Pollinaton Biology. Scientfc and Academic Editons, New York. pp: 558.

BPS Kabupaten Keerom. 2023. https://keeromkab. bps.go.id/publication/2023/02/28/350d5ec581e76186d28156a3/kabupaten-keerom-dalam-angka-2023.html

Budumajji, U., and S.A.J. Raju. 2018. Pollination ecology of Bidens pilosa L. (Asteraceae). Taiwania. 63(2): 89-100.

Cusser, S., N.M. Haddad, and S. Jha. 2021. Unexpected functional complementarity from non-bee pollinators enhances cotton yield. Agriculture, Ecosystems & Environment. 314: 107415.

Duara, P., and K. Jatin. 2014. Butterfly as poollinating insects of flowering plants. Global Journal of Science Frontier Research. 14(1): 1-6.

Duque-Trujillo, D., C.A. Hincapie, M. Osorio, and J.W. Zartha. 2023. Strategies for the attraction and conservation of natural pollinators in agroecosystems: a systematic review. International Journal of Environmental Science and Technology. 20(4): 4499-4512.

Galetto, L., and G. Bernardello. 2003. Nectar sugar composition in Angiosperms from Chaco and Patagonia (Argentina): An animal visitor’s matter?. Plant Systematics and Evolution. 238(1): 69-86.

Gombert, L.L., H.L. Hamilton, and M. Coe. 2010. Butterfly Gardening. University of Tennessee Agricultural Extension Service, Knoxville, TN, USA. pp: 1-14.

Katumo, D.M., H. Liang, A.C. Ochola, M.Lv, Q.F. Wang, and C.F. Yang. 2022. Pollinator diversity benefits natural and agricultural ecosystems, environmental health, and human welfare. Plant Divers. 44(5): 429–435.

LeBuhn, G., and J.V. Luna. 2021. Pollinator decline: what do we know about the drivers of solitary bee declines?. Curr. Opin. Insect Sci. 46: 106–111.

Layek, U., N.K. Baghira, A. Das, A. Kundu, and P. Karmakar. 2023. Dependency of crops on pollinators and pollination deficits: An approach to measurement considering the influence of various reproductive traits. Agric. 13(8): 2-11.

Nimbalkar, R.K., S.K. Chandekar, and S.P. Khunte. 2011. Butterfly diversity in relation to nectar food plants from Bhor Tahsil, Pune District, Maharashtra, India. J. Threatened Taxa. 3: 1601-1609.

Parsons, M. 1999. The butterflies of Papua New Guinea: Their systematics and biology. Academic Press. London.

Ramos-Jiliberto, R., P.M. de Espanés, and D.P. Vázquez. 2020. Pollinator declines and the stability of plant–pollinator networks. Ecosphere. 11(4): 1-11.

Sánchez-Bayo, F., and K.A.G. Wyckhuys. 2021. Further evidence for a global decline of the entomofauna. Austral Entomol. 60(1): 9–26.

Santhosh, S., and S. Basavarajappa. 2016. Study on nectar plants of few butterfly species at agriculture ecosystems of Chamarajanagar District, Karnataka, India. International Journal of entomology Research. 1: 40-48.

Segre, H., D. Kleijn, I. Bartomeus, M.F.W. de Fries, and M. de Jong. 2023. Butterflies are not a robust bioindicator for assessing pollinator communities, but floral resources offer a promising way forward. Ecol. Indic. 154: 1-10.

Segura, D.F., M.F. Cingolan, and E. Wajnberg. 2024. Entomophagous insects: Predators and parasitoids that shapeinsect communities and offer valuable tools for insect pestmanagement. Entomol Exp Appl. 172: 455–459.

Shi, X., C. Ma, and J. de Kraker. 2024. Influence of agricultural intensification on pollinator pesticide exposure, food acquisition and diversity. Journal of Applied Ecology. 61(8): 1905-1917.

Siopa, C., H. Castro, J. Loureiro, and S. Castro. 2023. PolLimCrop, a global dataset of pollen limitation in crops. Sci. Data. 10(1): 1–7.

Shihan, T.R., and N. Kabir. 2015. Butterfly diversity in relation to Chromolaena odorata (L.) King and H.E. Robins as a nectar plant from two selected regions of Bangladesh. Journal of Entomology and Zoology Studies. 3(3): 256–264.

Vasiliev, D., and S. Greenwood 2020. Pollinator biodiversity and crop pollination in temperate ecosystems, implications for national pollinator conservation strategies: Mini review. The Science of The Total Environment. 744: 140880.

Warren, A.D., Joshua, J.R. Ogawa, and A.V.Z. Brower. 2009. Revised classification of the family Hesperiidae (Lepidoptera: Hesperioidea) based on combined molecular and morphological data. Systematic Entomology. 34: 467-523.

Zhang, H., W. Wen-Ling, Q. Yu, D. Xing, Z. Xu, D. Kuang, Z. Jian-Qing, X. Zhang, L. Yong-Ping, and H. Shao-Ji. 2020. Spatial distribution of pollinating Butterflies in Yunnan Province, Southwest China with resource conservation implications. Insects. 11(525): 3-14.

Downloads

Published

2024-11-01

Issue

Section

Research Articles